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Abstract: Eyrmg's absolute rate theory (ART) evaluates chemical reaction rates as the equilibrium flux of systems 
through a dividing surface (DS) which is located at a definite place in a potential energy volume in phase space. A 
transmission coefficient is used to take account of trajectories which are reflected and return to the reactant region. 
The ART DS is perpendicular to the transition state's unstable normal coordinate and its location is therefore de­
termined by masses and the curvatures of the potential energy hypersurface (PES) at the saddlepoint. We show 
how an orthogonal transformation to coordinates other than the normal ones allows one to vary the orientation of 
the DS given the restrictions that it must pass through the saddlepoint of a PES with a minimum energy linear con­
figuration. Given these restrictions, we prove that if the flux through the planar Cartesian DS is not corrected for 
reflected trajectories, or those which do not originate from the reactant region of phase space, and the small 
vibrations approximation (SVA) is employed to evaluate concentrations on the DS, the ART placement of the DS 
represents an approximate upper limit on the minimum equilibrium reaction rate, ART does not give a rigorous upper 
bound on the minimum rate due to the employment of the SVA and a planar Cartesian DS. We also show how to 
evaluate the SVA flux through a DS which is perpendicular to the path of the steepest descent at the saddlepoint. 
Implications for the application of ART are discussed. For systems characterized by a very unsymmetrical PES, 
the ART placement of the DS may render the use of the SVA unreasonable. In such cases, it is more reasonable in 
terms of the assumptions involved to estimate the rate using the steepest descent DS. Kinetic isotope effects for 
such systems are related in a sensitive manner to the orientation of the DS and may provide experimental support 
for the utility of other than ART locations. ART in its usual form gives minimum kinetic isotope effects of the type 
considered here. An examination of the assumptions involved in the evaluation of mean reaction cross sections 
within the framework of ART for a particular reaction indicates that the accurate mean cross section greatly exceeds 
the SVA value. The SVA value is, however, in comparatively good agreement with the corresponding classical 
mechanical trajectory result. In this sense, at least in this case, the SVA represents a poor but useful approximation. 
The considerations here result in a variational formulation of ART whose utility may be studied using the classical 
mechanical trajectory method. 

Eyring's absolute rate theory (ART)1 has been applied 
with great success in quantitative studies of chemi­

cal reaction rates and isotope effects23 and perhaps 
even more importantly as a conceptual framework for 
the qualitative discussion of structural and other factors 
which influence reaction velocities.4 

(1) H. Eyring, J. Chem. Phys., 3, 107 (1935); S. Glasstone, K. J. 
Laidler, and H. Eyring, "Theory of Rate Processes," McGraw-Hill, 
New York, N. Y., 1941; K. J. Laidler, "Theories of Chemical Reaction 
Rates," McGraw-Hill, New York, N. Y., 1969. 

(2) J. Bigeleisen, F. S. Klein, R. E. Weston, and M. Wolfsberg, J. 
Chem. Phys., 30, 1340 (1959); A. Persky and F. S. Klein, ibid., 44, 3617 
(1966); R. E. Weston, Science, 158, 332(1967); A. A. Westenberg and 
N. deHaas, J. Chem. Phys., 47, 1393 (1967); K. A. Quickert and D. J. 
Leroy, ibid., 53, 1325 (1970); M. J. Stern, A. Persky, and F. S. Klein, 
ibid., 58,5697(1973). 

(3) D. J. Leroy, B. A. Ridley, and K. A. Quickert, Discuss. Faraday 
Soc.,44,92(1967). 

We begin with a discussion of the formulation of ART 
and proceed to show that it represents a special case of 
a more general variational theory due to Keck.5 We 
show that both theories give chemical reaction rates in 
terms of an integral over a dividing surface (DS) located 
in a potential energy volume in phase space at an inter­
mediate position between reactants and products. In 
ART, the DS is of a special type and has a definite 
location. In Keck's theory, the DS is arbitrary in 
certain respects and is regarded as a trial surface which 
may be varied in both shape and location in order to 
place a minimum upper bound on the rate. Some 

(4) J. E. Leffler and E. Grunwald, "Rates and Equilibria in Organic 
Reactions," Wiley, New York, N. Y., 1963. 

(5) J. C. Keck, J. Chem. Phys., 32, 1035 (1960); J. C. Keck, Advan. 
Chem.Phys.,13,&5(l967). 
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difficulties involving the application of this theory are 
discussed. The two theories are compared to show that 
the usual interpretation of the ART transmission prob­
ability is deficient. The sense in which the minimum 
variational rate represents an upper bound on the true 
rate is explained. The conditions which must be satisfied 
to obtain the best variational rate are then examined in 
order to provide an interpretation for the ART rate. 
A method is given for varying the DS orientation within 
the framework of ART. The implications of the con­
siderations given here for the application of ART are 
examined for a number of different potential energy 
hypersurfaces. The validity of the usual assumptions 
of ART is examined for a particular reaction by making 
comparisons involving accurate, small vibrations ap­
proximation (SVA), and trajectory mean cross sections. 

ART 

Basically, ART estimates reaction rates by placing a 
dividing volume (DV) within a potential energy volume 
in phase space at a definite location which is inter­
mediate between reactants and products.6 The DV 
passes through the saddlepoint (SP) of the potential 
energy hypersurface (PES) and has a definite orientation 
which may be expressed in terms of the variables which 
give the SP location. Phase points located within the 
DV correspond to transition states. The ART DV is 
perpendicular to the transition states unstable normal 
coordinate and its location is therefore determined by 
masses and curvatures of the PES at the SP. Using a 
classical model, ART then evaluates the reaction rate 
by multiplying the frequency (v *) of crossing the DV 
by the equilibrium concentration of transition states and 
the transmission probability «* at a given location within 
the DV; the total rate is obtained by integrating this 
product over the entire DV. According to this formula­
tion v * ~ l is the lifetime of a given transition state 
and K* is usually interpreted as the probability that a 
given phase point within the DV gives the desired re­
action product; i.e., it is zero or unity for a given phase 
point within the DV. In reality, j»* and K* depend 
upon all of the transition states coordinates and con­
jugate momenta except for those of the center of mass. 
In the usual application of ART, a number of additional 
assumptions are made; these will be discussed later. 

To make our discussion more concrete, we will use 
the bimolecular exchange reaction A + BC -*• AB + C 
between an atom and a diatomic molecule as an 
example. When the transition state has a linear mini­
mum energy configuration, the classical ART rate 
constant is given by the expression 

k' = TTr^T f • • • f K***e-*/M,nd9*d/>4 (1) 
LfAyBCj J i 

DV 

where QA and QBC are the classical reactant partition 
functions per unit volume; Qtran* is the translational 
partition function per unit volume for the transition 
state; H is the classical Hamiltonian; q( and pui = 1-
4, correspond to the vibrational normal coordinates and 
their conjugate momenta; and qt and pit i = 5, 6, are 
the Eckart rotational angles and their conjugate 

(6) H. S. Johnston, "Gas Phase Reaction Rate Theory," Ronald 
Press, New York, N. Y., 1966, p 119. 

momenta. In the notation used here, we consistently 
omit Planck's constant. 

Keek's Variational Theory 

Keek's5 variational theory of chemical reaction rates 
is based on an approach originally used by Marcelin7 

and developed later by Wigner8 and Horiuti.9 His 
phase space theory result for the rate constant takes the 
form 

/»v-n>0 
Ic1 = I V-n p do- (2) 

J DS 

where da is an element on the dividing surface (DS); 
v is the generalized velocity of a representative phase 
point; n is the unit normal to do-; and p is the phase 
point density function. Keck points out that in the 
regions where the reactants interact, the DS is somewhat 
arbitrary in nature and must be regarded as a trial 
surface which is subject to arbitrary variations. It must 
not, however, have any holes. A hole is a route con­
necting initial and final states which does not encounter 
the DS. Keck argues that the equilibrium value for p 
(pe = e~H 1107IQKQBC) is the maximum value which is 
consistent with the conservation laws10 and he uses this 
value to calculate an upper limit on the reaction rate. 
The rate given by eq 2 represents an upper limit for a 
number of reasons. Trajectories originating from the 
reactants may cross the surface a number of times; 
each crossing in the forward (product) direction for a 
single trajectory will contribute to the reaction rate on 
an equal basis. In addition, trajectories which originate 
from the products and cross and recross the surface will 
also be counted; i.e., trajectories which do not originate 
in the reactant region of phase space will contribute to 
the reaction rate. Trajectories which form closed loops 
through the DS in the transition region will also con­
tribute to the rate. 

Keek's theory is a variational one in that one may 
in principle vary the location of the trial surface in order 
to find the position that gives a minimum upper bound 
on the rate.11 For our example, eq 2 may be ex­
pressed as12 

k< = TTVT (••• fvn(ie-HiktUdqtfldpt (3) 
VA\JBCJ J i i 

DS 

where vn is the velocity in phase space normal to the 
DS and /3 relates the differential surface area dcr to the 
position and momentum coordinates; i.e., if v„ = Vi 
= qu then / 3 = 1 . 

Comparing the Theories 

It is interesting to compare eq 1 and 3. Consider 
the integration over qi and p\, the unstable vibrational 
normal coordinate and its conjugate momentum, in 
eq 1. Transition state theory requires that — 5/2 < 
qx < +3/2 where 5 is a small length along qv Since the 
DV is perpendicular to qu v* = (5^)-% where MI is 

(7) R. Marcelin, Ann. Phys. {Leipzig), 3,120(1915). 
(8) E. Wigner, J. Chem. Phys., S, 720 (1937). 
(9) J. Horiuti, Bull. Chem. Soc. Jap., 13,210 (1938). 
(10) This point will be taken up later. 
(11) Some difficulties in this regard will be taken up at a later point. 
(12) R. L. Jaffe, J. M. Henry, and J. B. Anderson, J. Chem. Phys., 59, 

1128(1973). 
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the reduced mass for motion along ^x.
13 Part of the 

hypervolume integral in eq 1 is given in eq 4. The 

/

+ 5/2 /» + » 

d ? 1 | KH&nY'Pie-w&Pi (4) 
-S/2 J -a> 

length 8 must be small enough to ensure that the poten­
tial energy is constant to a good approximation. It is 
clear that 8 cancels and eq 1 becomes 

2tra 
C A Q 1 

DS 

r^ie-^Hd^JJd/'* (5) 

Comparing eq 3 and 5, we note that both the transi­
tion state and variational formulations are essentially 
phase space theories which give the rate in terms of a 
hypersurface integral. In the former approach, a 
definite DS is specified; in the latter, a somewhat 
arbitrary trial surface is varied to place a minimum 
upper bound on the rate. Unfortunately, applications 
using the variational feature of Keek's theory have been 
restricted to the study of the recombination of attracting 
atoms in the presence of repulsive third bodies using a 
crude trial surface having one adjustable parameter.5 

The successful outcome of the study suggests that addi­
tional research using this approach is certainly 
warranted. 

We prefer to discuss ART in terms of the concept of 
a dividing surface rather than a dividing volume. The 
latter is, however, more useful when one considers the 
conditions under which a classical treatment of motion 
across the transition region is appropriate. For example, 
8 must be small enough so that dV/dqi » O within DV 
where V is potential energy. At the same time, the 
validity of the classical treatment of motion along q\ 
requires that the "width" of the transition region is 
large enough to allow the quantum mechanical un­
certainty in thermal velocities (q{) to be small.u 

The ART Transmission Probability and the Equilibrium 
Assumption in the Transition Region 

A comparison of eq 3 and 5 makes it clear that the 
usual interpretation of the ART transmission prob­
ability, given earlier here, is deficient.16 The trans­
mission probability K* in eq 5 depends upon five 
spatial and six momentum coordinates on the DS (qi = 
O). If a reactive trajectory, originating from the 
reactants, crosses the DS a number of times while 
proceeding in the general direction of the product 
(forward), «* must be O at all but one forward 
crossing in order to obtain the correct rate. For 
example, if a trajectory originating from the reac-

(13) It is interesting to note that within the SVA, the conjugate 
momentum for a vibrational normal coordinate is simply the time de­
rivative of the normal coordinate, i.e., pi = gi, /a = 1, and the con­
tribution to the approximate SVA Hamiltonian due to normal co­
ordinate 1 is simply '/iiqi- + \i?i2) where Xi is the eigenvalue for the 
unstable normal coordinate. The value of Xi is negative and the cor­
responding vibrational frequency, vi = XiV2/27r, is imaginary. When 
the exact Hamiltonian is formulated,14 the relationship between qi 
and pi is more complex due to the presence of Coriolis terms which 
account for vibrational-rotational interaction. 

(14) L. Page, "Introduction to Theoretical Physics," 2nd ed, Van 
Nostrand, New York, N. Y., 1934, Chapter 2; C. Eckart, Phys. Rev., 
47, 552 (1935); E. B. Wilson, Jr., and J. B. Howard, J. Chetn. Phys., 
4, 260 (1936); H. H. Nielsen, Rev. Mod. Phys., 23, 90 (1951); E. B. 
Wilson, Jr., J. C. Decuis, and P. C. Cross, "Molecular Vibrations," 
McGraw-Hill, New York, N. Y., 1955, Chapter 11. 

(15) J. O.HirschfelderandE. Wigner,/. Chem. Phys., 7, 616(1939). 
(16) Hirschfelder and Wigner16 and Anderson17 have also taken up 

this point. 

tants maps into the product region of phase space and 
intersects the DS three times, K* must be zero at one 
of the two forward crossings. If this is not done, the 
trajectory will incorrectly contribute twice to the rate. 
For a nonreactive trajectory originating from the 
reactants which intersects the DS twice, K* must be 
zero at the single forward crossing. Furthermore, K* 
must be 0 for trajectories which originate from the 
product region of phase space and cross and recross the 
DS to attain the forward direction, K* must also be 
zero for closed loop trajectories through the DS in the 
transition region. The proper values for K* in eq 5 
could be obtained by computing the appropriate 
classical mechanical trajectories (CMT). Even if 
these values are employed in eq 5, the ART rate 
would be larger than the true rate if as Keck sug­
gests p < pe for certain regions on the DS. 

Anderson17 suggested that the classical phase space 
distributions in the transition region are the equilibrium 
ones (p = pe) on any DS provided that trajectories 
moving in the direction of products which originate 
from reactants, products, and loops in the transition 
region are included. He supported his argument by 
example using collinear trajectories and did not regard 
the matter as proved. Recently, Mayer18 stated that 
Anderson's suggestion is correct and is "an obvious 
consequence of the Liouville theorem of classical 
mechanics." 

Conditions for the Best Variational Rate 

Horiuti9 has discussed the conditions which must be 
satisfied in order to obtain the minimum rate using the 
variational theory. His arguments are not entirely 
correct and are discussed here with some necessary 
modification. 

The hypersurface integral appearing in eq 2 and 3 
and Horiuti's eq 1 may be expressed in terms of our 
example as 

j'J"H''S-ff}^4dp' (6) 
DS 

where them's are orthogonal curvilinear coordinates, the 
p/s are their conjugate momenta, q\ is perpendicular to 
the surface, and /xi is the reduced mass associated with 
qi. One then integrates over positive values of pi = 
H1Vi and over all momentum space for the remaining 
momenta. The variational requirement for a minimum 
is then given by the equation9 

f. . . fflilirixW-e 
DS 

-VIkT y/ 

[ 
1 dV » _ 

kTdqi i 

or 

kTdqi 

s 

T1Pf 

SqJldqt = 0 (7) 

(8) 

where the p-i's are the reduced masses for the momenta, 
V is the potential energy on the DS, and the p4's are the 
principal radii of curvature.19 

(17) J.B.Anderson,/. Chem. Ph ys., 58,4684(1973). 
(18) I. Mayer,/. Chem.Phys., 60, 2564(1974). 
(19) G. James and R. C. James, "Mathematics Dictionary," multi­

lingual ed, Van Nostrand, New York, N. Y., 1959. 
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If the orthogonal curvilinear coordinates and 
momenta used are those of ART (spherical polar, 
Eckart), it is clear that one must integrate over the 
orientational coordinates in order to carry out the 
integration over the momenta. These coordinates 
do not affect the potential energy and Horiuti's varia­
tional condition may be modified accordingly. It 
would appear that all one has to do is evaluate eq 3 
with the conditions imposed by a modified version of 
eq 8 in order to obtain the best variational rate. A 
problem is encountered in this connection due to prac­
tical considerations involving the DS boundary con­
ditions. 

Anderson and coworkers12 and Porter and co­
workers20 have evaluated reaction rates using eq 3. No 
variational condition was used. The points in configura­
tion space were defined by the variables R, r, and 8 
where R is the vector connecting the BC center of mass 
to A, r is the BC vector, and 9 is the angle formed by 
the intersection of R with r. The spherical polar vari­
ables defining R and r and their conjugate momenta 
were used and the rate constant is given by 

k = [27r/cr/MA,Bc]'/!-Rt2 f %2dr X 
Jo 

f sinee-r(''Rft>)ikTdd/ f \ie-
y^r)IKT&r (9) 

where Rt, the distance between A and the BC center of 
mass, defines the location of the DS. Porter and co­
workers point out that the integrals which appear 
diverge when the circled limits are used due to the finite 
limit on the potential energy for dissociation. They 
showed that the value of the rate constant increased 
dramatically as the first circled limit was increased. 
On this basis, it appeared as though the arbitrary nature 
of the DS limit represented a serious handicap of the 
variational theory and combined phase space tra­
jectory (CPST) studies of reaction rates. How­
ever, their DS location was not a good one for two 
reasons: (1) it had "holes," and (2) it extended into 
the product valley for near linear configurations. 
The dramatic increase in rate which accompanied an 
increase in the DS boundary was a consequence 
of the fact that many reflected trajectories origi­
nating in the product region of phase space made 
a contribution to the rate as the surface was extended. 
The handicap, associated with the surface boundary, is 
not a serious one. One must use a surface without 
holes and simply extend the surface boundary until the 
contribution to the rate due to an increase in the limit 
represents a small fraction of the rate. It may, however, 
be difficult to locate a proper DS of the type discussed 
here in the transition region for a very unsymmetrical 
PES which does not give an enormous overestimate for 
the rate. This would of course seriously reduce the 
efficiency of the CPST method. 

We now consider ART in connection with Horiuti's 
formulation. When the integration over positive pi is 
carried out, one obtains the familar kT factor of ART 
provided that V1 = PJfX1. The momentum P1 is that of 
the transition state's unstable vibrational mode. Within 
the SVA, HI = 1 and V1 = ^1

13 and all is well. However, 

(20) R. N., Porter, D. L. Thompson, and L. M. Raff, J. Chem. Phys., 
submitted for publication. 

if one expresses the normal coordinates in terms of 
mass weighted Cartesian coordinates and includes 
vibration-rotation interaction terms in the Hamiltonian, 
it follows that14 

V1 = gi = P1 - HiUx - SiW1, - 3iuz (10) 

where the «'s are the components of the angular velocity 
of the rotating Eckart axes and their coefficients are 
determined by the transformation from normal to 
Cartesian coordinates as well as the particular values of 
the normal coordinates. ART assumes that V1 = pu 

i.e., that Q1 is separable in this sense. The terms in the 
Hamiltonian that couple the momentum of the un­
stable vibrational normal coordinate with the other 
vibrational-rotational momenta are assumed to be 
negligible. 

Horiuti calls the ART DS a Cartesian plane whose 
location is given by a particular value of qi. The 
ART DS for our example reaction is actually 11-
dimensional. The potential energy on the DS can, 
however, be resolved in a Cartesian plane. See ref 12. 
The RHS of eq 8 is on this basis zero and dV/dqi must 
be zero in order to satisfy the variational condition 
for the special case of a planar Cartesian surface. 
The value of the partial derivative at the SP is zero, 
i.e., qi = 0. Within the separability assumption, 
ART gives the upper bound (K* = 1) on the minimum 
rate for a planar Cartesian DS whose location is 
given by a particular orthogonal coordinate when 
that coordinate has its saddlepoint value. ART in 
its usual form makes an additional assumption; 
the SVA is used to evaluate concentrations on the DS. 
We will show that within this approximation, the use 
of the normal coordinate for the unstable vibration as 
the particular orthogonal coordinate does provide 
an approximate upper bound on the minimum 
equilibrium rate. However, when the SVA is not em­
ployed, another orthogonal coordinate and con­
sequently a different planar DS may give a lower rate. 
In other words, Horiuti's variational considerations are 
incomplete. The location of the DS may be changed 
by varying the form of the orthogonal coordinate as 
well as its value. 

Alternate Locations for the Planar Dividing Surface 

Consider eq 1 and the usual assumptions of ART. 
Degrees of freedom which do not influence the classical 
rate (through K^ or v*) factor out as the appropriate 
partition functions.6 We assume that K*, */*, and the 
location of DV do not depend on the rotational and 
bending vibrational coordinates and therefore depend 
only upon the two stretching normal coordinates 
q-B. and ^1 = q\, which correspond to the transition 
state's real and imaginary (unstable) vibrational modes, 
respectively. The expression for the rate constant then 
becomes 

k _ Qtr^QrotHQ^y x 

gAgBC 

f... {^-v+e-f'^il&qAPi (H) 
DV 

where we have made the SVA and grot ^ and g b * 
are the rotational and bending vibrational partition 
functions, respectively, and H' is the Hamiltonian for 
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the stretching modes. A R T assumes that K*, J>*, and 
the location of DV depend upon q\ alone. 

K*(?I , />I) (12) 

(13) 

- 6 / 2 ^q1 = Ci1AR1 + C2
1AR2 5$ + 5 / 2 (14) 

where 5 is a small distance along qz; ARt, i = 1, 2, is 
the bond displacement internal coordinate; and the 
coefficients Ci1 and c2

l are determined by a normal co­
ordinate analysis, i.e., by the masses and second partial 
derivatives of the potential energy with respect to ARi 
and AR2 at the saddlepoint. The satisfied equation 
corresponds to a thin strip of width 8 on the collinear 
PES map. Since qi « 0 within the strip, the potential 
energy within the strip is approximately that of the mode 
qR. The Appendix gives a convenient method for finding 
the location of the A R T DS which appears as a line on 
the collinear map. We use the symbol x for AR2JARi, 
the slope of the line. The value of x corresponding to 
the ART DS is given by the expression 

XART = - C 1 V C 2 (15) 

We now carry out an orthogonal transformation 
which serves to define two new coordinates qTC and qL. 

qTC = (sin <f>)qi + (cos 0)#R (16) 

qL = ( - c o s cj>)qi + (sin 0)#R (17) 

where for our purposes — 7r/2 ^ 0 ^ ir/2. Later, we 
will see that there are additional restrictions on the 
values of 0. The kinetic and potential energies for the 
stretching modes in the old and new coordinates are 

IT = gj2 + gR
2 = grc

2 + (Z1
2 (18) 

2 F = Xtfi2 + XR^R2 = (XR COS2 0 + 

Xi sin2 0)g rc
2 + (XR sin2 0 + Xi cos2 4>)qx

2 + 

2 sin 0 cos 0(XR — X i ) ^ 1 (19) 

where XR = 47rVR
2 and Xi = 47T2^i2 are the eigenvalues 

for the real and imaginary vibrations and V-R. and vi are 
the corresponding frequencies. The eigenvalue Xi is 
negative and vi is therefore imaginary. Recall that 
within the SVA the time derivative of a normal co­
ordinate gives the conjugate momentum for that co­
ordinate. 

The requirement for the position of the new DS is 
given by the equation2 1 

-5/2 ^ qTC $ + 5 / 2 (20) 

It follows that qTC « 0 and 2V= \xqx
2 where X1 = XR 

sin2 0 + Xi cos2 0 = 47T2P1
2. We now assume that 

K* = 1 for qTC > 0 and v± = g rc/5; the part of the rate 
constant integral involving qx and qI0 is then 

J + « -3,72!: TdqL f " e-M±V2fcTd?i x 
« / CO 

/

+S/2 /»«= 

5-'dqTC qT<!e-^/^dqTC (21) 
-S/2 J0 

(21) G. J. Wei and P. E. Yankwich, / . Chem. Phys., 58, 5552 (1973), 
discussed the effect of variations in reaction coordinate eigenvalue and 
eigenvector on the rate and hydrogen isotope effects of the reaction H 
+ CU -— HCl + Cl which has a nonlinear equilibrium configuration. 

The variational requirement takes the form 

dV 

d?r 
= 0 = (XR cos2 0 + Xi sin2 4>)qTC + 

sin 0 cos 0 (XR — Xi)^r1 (22) 

In order to satisfy the equation, the DS must pass 
through the SP (qTC = 0) and 0 must be 0 or ± rr/2 since 
— °° < <7± < + °° on DS. Since X1 is the eigenvalue 
for the real vibration, it follows that 

XR sin2 0 + Xi COS2 0 > 0 (23) 

This places the following restrictions upon the orienta­
tion of the DS 

0„ < 0 ^ TT/2 (24) 

- T T / 2 ^ 0 < - 0 „ (25) 

where 0„ = t a n - 1 ( — XI/XR)1 ' '2 and the rate is infinite 
at ± 0 „ . The minimum SVA rate is therefore the A R T 
one; i.e., <j> = ± TT/2 and X1 = XR. The infinite rate 
at ± 0 « is of a course a consequence of the SVA. 
The connection between 0 and x for a given DS is 
given by the expression 

AR2 _ Ci1 tan 0 + ciR 

AR1 C2
1 tan 0 + c2

R (26) 

or 

0 = tan-r-^±i^l (27) 
L C1

1 + Xc2
1 J 

where #R = cinARi + c2
RAR2 and a normal coordinate 

analysis provides the values of CiK and c2
R. 

Integration of eq 21 provides the result (JiT)2Ivx. 
When the A R T DS is used, vx = VR. Consequently, 
the classical rate alteration when an acceptable DS 
other than that of A R T is used is simply VRJVX ( ^ 1). 
In the usual application of ART, the rate if formulated 
in terms of quantum mechanical partition functions. 
In this case, the rate alteration is simply 

e»cR-'1)/2*r(i _ e-ft"K/*r)/(i _ e-*"±/*r) (28) 

When K^ = 1 and the assumption involving t h e 
integration over/?i is made, eq 1 may be expressed as 

K = kTQ*IQ^Q*c (29) 

where Q * is the classical transition state partition 
function excluding the contribution due to the reaction 
coordinate. <2* is usually evaluated employing the 
SVA approximation for the potential energy on the 
DS. It is worthwhile to note that Q * may be evaluated 
using the accurate potential energy using the expres­
sion22 

kTQ* = [ ! £ ] V ( 2 T W T [ - mAwBOTc " IV i 
- 8TT2 X 

jriK + m-e, + W0 . 

f " VRi\q^)R2\q^J{ARi,AR2lQ,qR) sin 8 X 

e -m R , 9 ) /* r d 0 d 9 R ( 3 0 ) 

where the R's are the transition state bond lengths, 6 
is the angle which gives the deviation from linearity, 
and J is an appropriate Jacobian.2 3 The SVA result for 

(22) G. W. Koeppl, unpublished work. For the techniques involved, 
seeref 23. 

(23) H. L. Strauss and E. Thiele, / . Chem. Phys., 46, 2473 (1967). 
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CC 

• & & & 

S" f ^ 

# A. 

f&P 
T=200°K 

R(DH) 
Figure 1. Alternate dividing surfaces for the D + H2 reaction. 
See text for explanation. 

CC 

CO 

' 4 I \ \ 

•^"^ * X / 

X / AN 

/ / / ^ T=25°C 

^S==—~z:——<-0X 

R(HCl) 
Figure 2. Alternate dividing surfaces for the Cl + H2 reaction. 
See text for explanation. 

J is [(mA + WB + mc)/mAWBWc]1/2. Equation 30 
reduces to that of the SVA under the proper conditions. 
For an alternate DS, one replaces <jR with qL and J 
with the expression appropriate for this coordinate. 
The integral in eq 30 diverges; one must use a practical 
limit for q-&. 

Steepest Descent SVA Rates24 

The SVA collinear transition state potential energy 
may be expressed as 

IV = Z1AiJ1
2 + Z2AiV + 2/^2ARAR1 (31) 

where the/ 's are valence bond stretching force constants. 
We set this expression equal to zero and solve for 
the two values of AR2/ARi = xC=1=) which give the lines 
corresponding to V = 0 on the collinear PES. 

X(±) = 
-fn ± (A/ - A/a* 

/2 
(32) 

The bisector of these lines gives the path of steepest 
descent at the saddlepoint. Let 

Si = - fx(+) ] -

S2 = - [ * ( - ) ! 
The value of x = ARiJARi corresponding to a DS which 
is perpendicular to the path of steepest descent at the 
SP is 

X(SD) = 
S1(I + S2^- + S2(I + S1

2)'* 
(1-+ S1

2)'/= + (1 + S2
2)1'-

(35) 

This expression is valid provided that S1 and S2 have the 
same sign (+-)• If one value is positive and the other 
negative, x(SD) is given by the negative reciprocal of 
this expression. 

Applications 

We now consider the consequences of varying the 
orientation of the DS within the framework of ART. 

(24) Leroy, et a/.,3 pointed out that the normal coordinate asso­
ciated with the transition state's imaginary mode did not lie parallel 
to the path of steepest descent at the SP in the case of the D + H2 and 
H + D2 reactions. They discussed the consequences insofar as a 
tunneling correction was concerned. 

We examine a series of reactions. In the series, the 
potential energy surface changes from symmetric to 
very unsymmetric. See Table I for descriptive informa­
tion for the surfaces and Table II for transition state 

Table I. Descriptive Information for Reactions and Potential 
Energy Surfaces 

Reaction 

D + H 2 

Cl + H2 

Br + H2 

F T H2, 
F + D2 

Surface type 

Symmetrical harmonic surface 
corresponding to the best 
ab initio PES 

Nearly symmetrical LEPS 
surface 

Unsymmetrical extended LEPS 
surface 

Very unsymmetrical extended 
LEPS surface 

Ref 

a, b 

C 

d 

e,f 

" G. W. Koeppl, J. Chem. Phys., 59, 3425 (1973). b B. Liu, ibid., 
58,1925 (1973). ' A. Persky and F. S. Klein, ibid., 44, 3617 (1966). 
d C. Paar, Ph.D. Thesis, California Institute of Technology, CALT-
532-38, 1969. ' J. T. Muckerman, Surface V, private communica­
tion. I G. W. Koeppl,/ . Chem. Phys., 60,1684(1974). 

(33) Table II. Transition State Properties 

(34) Transition 
state 

n, A 
r2 

£•„,» kcal 
mol - 1 

fi,b mdyn 
A"1 

R 
fn" 
fb,c ergs 

X 1011 

BrHH 

1.4898 
1.1483 

20.854 

2.278 

0.0643 
0.9382 
0.4058 

FHH 

1.5413 
0.7618 
1.0644 

-0 .0748 

4.9066 
0.4962 
0.0217 

ClHH 

1.4115 
0.9745 
7.7592 

1.5677 

0.5700 
1.5105 
0.0774 

DHH 

0.9297 
0.9297 
9.50 

1.02 

1.02 
1,47 
0.0815 

° Classical activation energy. b Valence bond stretching force 
constants. c Valence bending force constant. 

properties. In Table III, we give the real and imaginary 
normal mode eigenvalues, the limiting values of 0 
(±0„) , the normal mode values of y (see Appendix), 
and the steepest descent rate alterations. In Figures 
1-4, we show the consequences of using alternate DS's. 
The PES contours of the semiempirical surfaces are 
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Table III. Normal Coordinate Properties and Steepest Descent Rate Alterations 
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Reaction 

Br + HH 
Br + DD 
F + H H 
F + DD 
Cl + HH 
Cl + DD 
D + H H 
H + DD 

XE-

1.1817 
0.6056 
8.7506 
4.3804 
1.0758 
0.5641 
1.8310 
1.8271 

X1 

-0.6267 
-0.3137 
-0.07628 
-0.04181 
-1.3425 
-0.6755 
-1.2055 
-0.7554 

± </>«,, deg 

±36.06 
±35.74 
±5.334 
±5.580 
±48.17 
±47.58 
±39.06 
±32.74 

7, deg 

38.91 
39.28 
42.82 
43.96 
64.70 
65.49 
86.02 

3.700 

XAET 

-0.2009 
-0.1980 
-2.1427 
-2.1573 

0.9990 
0.9645 
0.6642 
1.6198 

X(SD) 
(perpendicular 

to path of 
steepest 
descent) 

0.36677 
0.36677 

10.139 
10.139 
0.72287 
0.72287 
1.0 
1.0 

QM rate alteration at 
X(SD) (r, 0K) 

1.153(400) 
1.113(400) 

15.82(298.16) 
6.273(298.16) 
1.015(298.16) 
1.009(298.16) 
1.060(200) 
1.114(200) 

- Given in practical units (mdyn A - ' amu" ')• 

R(HBn) 
Figure 3. Alternate dividing surfaces for the Br + H2 reaction. 
See text for explanation. 

R(FH) 
Figure 4. Alternate dividing surfaces for the F + H2 reaction. 
See text for explanation. 

given in the background. A DS which has an un­
acceptable potential energy for the qL mode is labeled 
with an X. The first number at the end of the DS line 
gives the value of 0; the second number gives the quan­
tum mechanical (QM) alteration of the ART rate. The 
dashed lines indicate the limiting values for </> (± <£„) and 
have two X's at the ends. The DS formed by alternating 
+ and — signs is perpendicular to the path of steepest 
descent at the SP. The figures show that the con­
sequences of using alternate DS's are the most serious 
for very unsymmetrical potential energy surfaces such 
as that for F-H-H. For this reason we consider this 
system in more detail. 

In Table IV, we give the rate alterations for the re­
actions F + H2 and F + D2. We give rate alterations 
both at the same values of <f> and the same values of x-
In the absence- of CMT studies, one has no means to 
decide whether in calculating kinetic isotope effects one 
should use the same transformation angle cf> or the same 
DS position as measured by x in making the rate com­
parison. We therefore report isotope effect alterations 
of both types. They do not differ greatly. It is im­
portant to point out that the ART SVA isotope effect 
is a minimum. The ART isotope effect is 1.64 at 25°; 
the experimental value is ca. 1.9.25 The harmonic 
isotope effect alteration (QM) at cj> = - 7 0 ° based on the 

(25) A.Persky,/. Chem. Phys., 59, 3612(1973). 

same transformation angle for each reaction is 1.18; 
this correction brings the experimental and calculated 
isotope effects into agreement with no recourse to a 
tunneling correction at 25°. The steepest descent iso­
tope effect alteration at <j> = —44.92° for both reactions 
is 2.24. In Figure 5, we compare experimental,25 

ART, and - 7 0 ° DS isotope effects. 
In Figure 6, we give the potential energy for the q± 

mode along different DS's. The harmonic ART 
potential is in poor agreement with the PES result. 
The agreement is improved as the position of the DS is 
varied. As the potential along the DS becomes more 
acceptable, the alteration of the isotope effect becomes 
less acceptable in terms of agreement with the ex­
perimental value. The lack of agreement between 
experimental and theoretical isotope effects may 
be due of course to quite a number of reasons: (1) the 
limitations of SVA ART; (2) the use of an approximate 
PES as a basis for the SVA; (3) the calculations do not 
include an isotope effect on the classical transmission 
coefficient; (4) PES nonadialaticity (more than one 
PES may be important for this reaction); and/or (5) 
the lack of an appropriate quantum mechanical correc­
tion. Perhaps CMT studies will suggest a means for 
dealing with what we have referred to as an unaccept­
able DS potential for qx • The elucidation of the correct 
explanation for the disagreement respresents a con­
siderable challenge. The considerations here certainly 
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Table IV. Isotope Effects at Different Dividing Surfaces for the F + H2 vs. F + D2 Reactions" 

V1, cm" 

Harmonic Anharmonic Isotope effect on alterations 
Harmonic QM classical classical Classical 

alteration alteration alteration QM anharmonic 

H 3854* 
D 2727* 
D 2727* 
H 3619* 
D 2578* 
D 2561* 
H 3333* 
D 2390* 
D 2358* 
H 2709 
D 1966 
D 1916 
H 1902 
D 1395 
D 1344 
H 1274 
D 940 
D 893 
H 568 
D 420 
D 394 

-2.143 
-2.143 
-2.157 
-3.704 
-3.704 
-3.886 
-6.653 
-6.653 
-7.596 
10.139 
10.139 
7.674 
1.784 
1.784 
1.618 
0.7755 
0.7755 
0.7177 
0.2378 
0.2378 
0.2194 

±90 
89.67 

±90 
-70 
-71.11 
-70 
- 6 0 
-61.36 
- 6 0 
-44.92 
-46.39 
-44.92 
- 3 0 
-31.22 
-30 
- 2 0 
-20.89 
- 2 0 
- 1 0 
-10.46 
- 1 0 

1.0 
1.0 
1.0 
1.761 
1.430 
1.493 
3.517 
2.255 
2.436 

15.82 
6.273 
7.070 

111.1 
24.89 
28.18 

506.2 
75.36 
83.48 

2968 
300.8 
326.9 

1.0 
1.0 
1.0 
1.065 
1.057 
1.065 
1.156 
1.141 
1.156 
1.422 
1.387 
1.423 
2.027 
1.955 
2.029 
3.025 
2.901 
3.035 
6.788 
6.490 
6.918 

1.866 
1.473 
1.497 
2.124 
1.963 
2.036 
3.034 
2.910 
3.044 
6.796 
6.497 
6.919 

1.0 
1.0 

1.231 
1.180 

1.559 
1.444 

2.522 
2.238 

4.464 
3.942 

6.717 
6.064 

9.867 
9.079 

1.267 
1.246 

1.082 
1.043 

1.043 
0.997 

1.046 
0.982 

1 An asterisk indicates that the DS is unacceptable. The quantum mechanical (QM) alterations are for 25 0C. 

OR 

0.7 

1fc0.6 

- Q S 

04 
2.5 3.0 

T 
3.5 

'1XlO3 

^EXPT. 
^ 0 = - 7 0 ° 

ART 

4.0 

Figure 5. Comparison of experimental and theoretical isotope 
effects for the reactions F + H2 vs. F + D2. 

60 

- 4 0 
J 20 
5 0.0 

-20 

• \ ,HARMONIC ART 

\ \ / /^-4492(SD) 
\ _ / ^ \ ^ C $ = - 7 0 

d>=±90(ART)V J > 

-.4 -2 0 .2 4 .6 .8 1.0 1.2 
I1(A

5I 

Figure 6. Potential energy along the dividing surface for F-H-H. 

indicate that there is a great deal more ambiguity than 
is usually recognized in ART calculations of kinetic 
isotope effects. 

Refined Treatment in Terms of Mean Reaction 
Cross Sections 

It is desirable at this point to consider the error due 
to the SVA in ART applications of both the usual and 
alternate DS type. In order to do this without in­
troducing any uncertainty via the DS boundary, we 
will make comparisons in terms of mean reaction cross 
sections which may be formulated in terms of convergent 
integrals. 

Morokuma, Eu, and Karplus26 have obtained ex­
pressions for the mean reaction probabilities and cross 
sections of ART which are a function of the total sys­
tem energy. Their results are valid within the harmonic 
oscillator-rigid rotor approximation, i.e., the SVA. 
Their classical mean reaction cross section may be 
defined as 

S1(E) = Ie1(E)]-! f . f (E- E-^)H(E - £ l n t ) X 

BC potential energy 
phase volume 

3 

Sr(E - Eint;qi9pt,i = l-3)]JdqApt (36) 
i 

where 

!(£) = J . . . j (E-Eint)X 
BC potential energy 

phase volume 

H(E - Eint)JldqtdPi (37) 

where E is the total system energy; Eint is the internal 
energy of the reactant, BC; the qt and pt are the reactant 
internal coordinates and momenta; and H(X) is the 
Heaviside step function, i.e., H(X) = 1 for X > 0 and 
0 for X < 0. The ART result for S1(E) may be evaluated 
readily if one assumes that K* = 1 and makes the 
approximation discussed earlier involving the integra­
tion over pi. The classical expression for S1(E) takes 
the form 

S1(E) = [87TMA1BCe1(E)]"1 X 

f . f H(E-E0- Eiat*)fldqtdPi (38) 

potential energy 
phase volume on DS 

where MA.BC is the reduced mass for the reactants; Ec 

is the classical activation energy; £int * is the internal 

(26) K. Morokuma, B. C. Eu, and M. Karplus, / . Chem. Phys., 51, 
5193(1969); see also ref 29 and 31. 
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energy of the transition state; qt and pit i = 1-3, 
correspond to the coordinates and momenta for the 
transition state's real stretching and bending Cartesian 
normal coordinates; and qt and pit i = 4, 5, are the 
Eckart rotational angles and their conjugate momenta. 
When the mean cross section is desired for an alternate 
DS, qL is used in place of q*.. Equations 36-38 repre­
sent modifications of eq 19-21 of reference 26. The 
integral of eq 38 converges when the PES is unsym-
metrical provided that the total energy does not exceed 
the appropriate dissociation energies. 

We have evaluated ST(E) at a total energy of 0.5 eV 
for the reaction27 

H + HBr H2 + Br 

using eq 38 and a semiempirical PES studied by Paar.28 

A Monte-Carlo rather than a quadrature technique 
was employed to evaluate the integrals since this allows 
us to accurately estimate the error of the result. The 
accurate Hamiltonian was used to evaluate £ i n t *

1 4 and 
no recourse was made to the SVA. The rather con­
siderable details involved are given elsewhere.27 Values 
of S1(E) were computed for the steepest descent and 
ART dividing surfaces. Monte-Carlo points were 
selected until the error in S1(E) was ca. 5%; this in­
volved ca. 106 points. We have also evaluated the 
corresponding SVA-values using eq 57 of ref 26 and its 
alternate DS modification; i.e., V1(SD) is used in place 
of VR. In addition, we have also evaluated S1(E) using 
the classical mechanical trajectory method and a 
Monte-Carlo technique.27 

The eq 38 accurate Hamiltonian ART, SVA ART, 
and trajectory values of St (0.5 eV) are 5338 ± 4.4%, 
2.446, and 4.39 db 10.7%, respectively in atomic 
units. The corresponding accurate average clas­
sical transmission coefficient of ART is therefore 
8.22 X 10-4 ± 11.6%. The eq 38 and SVA steepest 
descent values of S1 (0.5 eV) are 9.301 ± 5.0% and 
2.598 (x(SD) = 2.726, cj> = -74.63°). In this case 
at least, the results show that the SVA is a poor ap­
proximation indeed. However, the comparatively good 
agreement among the SVA ART, SVA steepest descent, 
and trajectory values indicates that, nevertheless, the 
SVA represents a useful approximation. The general 
validity of these findings must be investigated.27 

Finally, inspection of Figure 3 indicates that the 
ART DS has "holes" and is improper for this reason. 
In addition, we point out that the eq 38 steepest descent 
DS cross section is much smaller than the corresponding 
ART value. The ART DS extends into the "product 
valley" of the potential energy surface. Many points, 
which correspond to trajectories which originate in the 
product region of phase space and are reflected, con­
tribute to the eq 38 mean cross section. The harmonic 
approximation is a poor one indeed for this type of DS. 

Conclusions 

The ART DS is a planar Cartesian one which is 
perpendicular to the transition state's unstable normal 
coordinate. The location of the DS may be varied 
within the framework of ART by making an orthogonal 
transformation to coordinates other than the normal 

(27) G. Koeppl and M. Karplus, to be published. 
(28) C. Paar, Ph.D. Thesis, California Institute of Technology, 

CALT-532-38, 1969. 

ones. We applied the restrictions that it must pass 
through the saddlepoint of a potential energy hypersur-
face with a minimum energy linear configuration. With 
these restrictions, if the flux through the surface is not cor­
rected for trajectories which are reflected or do not origi­
nate from the reactant region of phase space, and the SVA 
is employed to evaluate concentrations on the DS, the 
ART placement of the DS represents an approximate 
upper limit on the minimum equilibrium rate. ART 
does not give a rigorous upper bound on the minimum 
rate due to the employment of the SVA and a planar 
Cartesian DS. The SVA distorts the potential energy 
hypersurface. As a result, some allowed trajectories 
may be eliminated and some forbidden ones in­
cluded. 

ART does not give the SVA rate for a DS which is 
perpendicular to the path of steepest descent at the 
saddlepoint. When a DS other than that of ART is 
used, the potential energy contains a "cross term" even 
near the SP where the SVA represents a good approxi­
mation. We point this out since the importance of a 
separable reaction coordinate has been emphasized in 
the literature16,29'30 in connection with dynamical 
considerations. 

For systems characterized by a very unsymmetrical 
potential energy surface, the ART placement of the DS 
may render the use of the SVA particularly unreasona­
ble. In such cases, it is more reasonable in terms of the 
assumptions involved to estimate the rate using the 
steepest descent DS. Kinetic isotope effects for such 
systems are related in a sensitive manner to the orienta­
tion of the DS and may provide experimental support 
for the utility of other than ART locations. The usual 
form of ART gives minimum kinetic isotope effects of 
the type considered here. 

Further study of Horiuti's variational condition for 
minimum rates and its use in practice are desirable. 
The possibility of practical limitations arising due to the 
somewhat arbitrary DS boundary should be ex­
plored. 

The generality of the findings in the final section here 
should be investigated. 
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Appendix 

Location of the ART Dividing Surface. Consider 
three,colinear atoms with masses mu m2, and mz and 
relative Cartesian displacement coordinates zu z2, and 
Z3. We define two coordinates qx' and q2' which serve 
as precursers to the normal coordinates. 

Qi (mrmi/af^Z! - Z3) 

q,' = 2(m2£)'/ 
Z2 -

WiZi + W3Z3I 

2w2 
3(T 

1A 

(29) R. A. Marcus, J. Chem. Phys., 45, 2138, 2630 (1966); 46, 959 
(1967). 

(30) L. Hofacker, Z. Naturforsch. A, 18, 607 (1963); R. A. Marcus, 
J. Chem. Phys., 43,1598(1965). 
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where 

a = mi + m3 

2 = Wi + m2 + m3 

In these coordinates, the vibrational kinetic energy for 
the stretching modes may be expressed as 

IT = <?i'2 + g2'2 

The stretching vibrational potential energy may be 
conveniently expressed as 

2V = fxArS + /2Ar2
2 + 2/I2Ar1Ar2 

where 

Ar1 = Zi — Z2 

Ar2 = Z2 — Z8 

In terms of qi' and q2, the potential energy has the form 

2V = kift'2 + M2 ' 2 + 2 ^ i V 

where 

ki = m%fijmi<x + mifijmsa + 2/i2/<r 

^2 = ZX/i + /2 - 2/i2)/m2cr 

fcw = S 1 7 ^ i Z 2 - m8/i +/12(^3 - Wi)]/o-(wim2m3)
1/! 

The total stretching vibrational energy may then be 
expressed as 

2£ = ft'2 + g2'
2 + M i ' * + M2 ' 2 + 2fcuft V 

We now make an orthogonal transformation to what 
will become the normal coordinates. 

qx' = (sin 7)91 + (cos 7)92 

q2 = ( - c o s 7)^1 + (sin 7)g2 

The cross term in the potential energy will vanish pro­
vided that the equation below is satisfied. The coordi­
nates qx and q2 are then the normal coordinates. 

(&i — k2) sin 7 cos 7 + /ti2(sin2 7 — cos2 7) = 0 

The value of 7 given by the correct choice of the sign 
in the expression below will satisfy this equation. 

y sm Lv~2i U^ + ^1 - k2)
2J ; J 

The eigenvalues of the normal coordinates which ap­
pear in the equation 

IV = X191
2 + X2^2

2 

are given by the equations 

Xi = k\ sin2 7 + /c2 cos2 7 — 2fci2 sin 7 cos 7 = 47T2 î2 

X2 = ki cos2 7 + ki sin2 7 + Ik12 sin 7 cos 7 = 4^2V2
2 

One of the eigenvalues will be negative and is denoted 
by Xi in the main body of the paper, and the other will 
be positive and is denoted by XR. 

The normal coordinates may be conveniently ex­
pressed in terms of the internal displacement coordinates 
Ar1 and Ar2. 

qi = Ci<»Ari + C2'"Ar2 

q2 = ci<»Ari + c2<
2) Ar2 

The normal coordinates corresponding to the positive 
and negative eigenvalues will be denoted by R and I, 
respectively. The normal mode coefficients are given by 
the expressions 

» = |_—J sin 7 + 4 ^ J 

r m2 T A 

L <r j - ' ~ m[^\ 

Ci1 

... rwim 8 T A . 
C2(D = I I S1n 7 

cos 7 

cos 7 

,,, \m1mf\h P m2 T
A . 

Cla) = cos 7 — Wi - ^ sin 7 

C2 
(2) cos 7 + W8 fel' sin 7 
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